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On the Complex Nature of Higher Order Modes
in Lossless Nonreciprocal Transversely
Magnetized Waveguides

R. Marqués, F. Mesa, and M. Horno, Member, IEEE

Abstract—Propagation of nonreciprocal modes in transversely
magnetized lossless nonreciprocal waveguides is analyzed. It is
shown that purely evanescent modes cannot exist if the wave
propagation is nonreciprocal. As a consequence of this all the
modes which do not support a net average power flux must be
complex. These modes are called here pseudo-evanescent complex
modes. The meaning of the cutoff frequency concept of such
pseudo-evenescent complex modes is also discussed.

I. INTRODUCTION

OMPLEX modes in reciprocal lossless inhomogeneous
Cwaveguides [1]-4], as well as in reciprocal homoge-
neously and anisotropically filled waveguides [5] have been
reported in the literature. In all these cases, a plane wave
with a z dependence of the fields e~7%* was assumed, where
k = [ — jo is the complex propagation constant, § is the
phase constant and « is the attenuation constant. It has also
been reported that four values of the propagation constant k,
—k, k* and —k* are present. More recently complex modes in
nonreciprocal lossless waveguides have been investigated [6].

In the present letter, wave propagation in transversely mag-
netized lossless nonreciprocal waveguides is analyzed. It is
shown that all the modes which do not carry a net average
power flux, become complex when the wave propagation is
nonreciprocal. These modes are called here pseudo-evanescent
complex modes

II. THEORY

Let a waveguide be inhomogeneously filled with lossless
gyrotropic materials (see Fig. 1), having the following prop-
erties:

6—L'(—-H’o,z) = a*(Ho,i) (D
(-H,;) =5"(H,;). 2

In the following, we will denote {H,; k} a mode in
the waveguide magnetized with the dc fields H,,, having
complex propagation constant k. We say that this mode is a
nonreciprocal mode (with respect to the propagation constant)
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Fig. 1. A general lossless waveguide inhomogeneously filled with trans-

versely magnetized gyrotropic media.

if there is no other mode {H, ,, —k} with opposite propagation
constant.

If Maxwell’s equations are applied to the {H, ;, k} mode
of the waveguide, the following equations are satisfied in each
homogeneous subsection:

—jka, x E; +Vy x E; = —jwh, - H; 3
_jkaz XHz‘l’VtXHz:jWEz'Ei: 4

where E(z,y) and H(z,y) are the radiofrequency fields in
the ith homogeneous subsection, associated with the mode
{H,., k}.

Taking the complex conjugate and after some calculations,
the same equations are obtained for the radiofrequency fields
(E;,—H?), provided k changes to —k* and the constitutive
tensor are replaced by by €. 7z, (i.e., if the dc magnetizing
field H,; is replaced by —H,,). Since the new boundary
conditions imposed by the change of H,, to —H,, are also
satisfied by (E;,—H)), we conclude that if {H,;,k} is a
mode of the waveguide, {—H,, ;, —k*} represents also a mode
of the guide.

Let us now consider the latter mode {—H, ;, —k*}. After
a reflection in the transverse (z — y) plane, and taking
into account the electromagnetic field properties with spatial
reflection [7], this mode becomes a {H,, ,, k*} mode, provided
that the dc bias field H, ; is contained in the transverse (z —y)
plane. Therefore, in transversely magnetized waveguides, the
existence of the {H, ,,k} mode, implies the existence of the
{H,;,k*} mode.
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TABLE I
CoMPLEX ProPAGATION CONSTANT IN mm ™! IN A FERRITE-LOADED PARALLEL-PALATE WAVEGUIDE!
WITH hiy = 2 mm, hg = 8 mm, eg/¢, = 1, 5 = 12.6, Hy = 500 Oe, f = 10 GHz

Mode 4rMs =0 4n M, = 100 47 Ms = 300 4rMs = 1000 4w M, = 2000

1 0 0.0028 0.0075 0.0249 . 0.0396
+50.0849 +50.0876 +50.0957 450.1407 +50.2368

2 0 0.0027 0.0082 0.0322 0.1093
+50.5021 +50.5025 +50.5035 +50.5112 +50.5469

3 0 0.0014 0.0044 0.0169 0.0495

- +50.8539 +50.8539 +50.8540 +70.8531 470.8361

4 0 0.24- 103 0.74 - 103 0.0030 0.0088
+51:1953 +451.1953 +451.1955 +51.1962 +51.928

' See Fig. 2. '

Notice that purely evanescent modes, {H,;, —ja}, can
not be nonreciprocal, since in this case, the reciprocal mode
{H,;,jo} must also exist. On the other hand, it is a well-
known fact that all modes that do not carry a net average
power flux must be either evanescent or complex. Thus, since
the existence of nonreciprocal purely evanescent modes in
transversely magnetized waveguides is impossible, it turns out
that all nonreciprocal modes that do not support a net average
power flux must be complex in this type of waveguide.

III. NUMERICAL EXAMPLES

In this section, we will analyze the dispersion characteristics
of nonreciprocal TE modes in a ferrite-loaded parallell plate
waveguide. The method of analysis will be the same as that
presented in [8], and it will not be developed here.

‘The effects of the nonreciprocity on the propagation constant
of the TE modes are shown in Table 1. This table shows the
variation in the propagation constant of the first four TE modes
with respect to the magnitude of the internal magnetization
of the ferrite slab (which is varied from 0 to 2.000 Gauss).
The operation frequency (fr) is.chosen in such a way that
the four modes considered were purely evanescent in the
reciprocal case (M, = 0). It is clearly observed how the
presence of nonreciprocity makes the evanescent reciprocal
modes (M = 0) turn into nonreciprocal pseudo-evanescent
complex modes with the aforementioned properties.

Fig. 3 shows the dispersion of the attenuation and phase
constant of the first TE mode of the above waveguide. Reading
this figure from the right to the left, it can be seen how
the transition from propagating to pseudo-evanescent complex
" modes takes place at a nonzero value of the phase constant, and
after the phase constant of one of the propagating modes passes
through zero. This behavior has been found in all the analyzed
pseudo-evanescent modes, and it is in agreement with the well
known fact that complex modes can appear as a combination
of a forward and a backward wave [9]. This fact suggests
that the cutoff frequency of pseudo-evanescent modes can be
defined as the frequency at which the complex mode appears.
This cutoff frequency does not coincide with the frequency
at which the phase constant of the propagating modes passes
through zero. ,

IV. CONCLUSION

It has been shown that nonreciprocal purely evanescent

Fig. 2. Ferrite-loaded paralle]l-plate waveguide transversely magnetized.
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Fig. 3. Phase constant 8: ( ) and attenvation factor a: (- — - =)

in mm~1! of the first TE mode in a ferrite-loaded parallel-plate waveguide
(see Fig. 2), with hy = 2 mmhy = 8 mm, eg/ep = 1, e7/ep = 12.6,
4x M, = 2000 G, Hy = 500 Oe.

modes can not appear in transversely magnetized nonrecip-
rocal waveguides. Pseudo-evanescent nonreciprocal complex
modes take the place of such modes in these waveguides. Nu-
merical investigations suggest that pseudo-evanescent complex
modes always appear as a combination of a backward and
a forward wave, after the phase constant of one of these
waves (the backward one) passes through zero. Thus, the
cutoff frequency of pseudo-evanescent complex modes does
not coincide with the frequency at which the phase constant
passes through zero.

Nonreciprocal pseudo-evanescent complex modes are a type
of complex modes. They are complex modes because they
have a complex propagation constant and do not carry a net
average pover flux. Nevertheless, these modes also preserve



certain properties of the evanescent modes, such as the ex-
istence of a cutoff frequency. The propagation constant is
purely real for frequencies above the the cutoff frequency but
it turns out to be complex (with nonzero real and imaginary
parts) below the cutoff frequency. Pseudo-evanescent complex
modes turn into purely evanescent modes as the cause of
the nonreciprocity dissapears (for instance when the external
magnetic field is removed).
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