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On the Complex Nature of Higher Order Modes

in Lossless Nonreciprocal Transversely

Magnetized Waveguides
R. Marqtx%, F. Mesa, and M. Homo, Member, IEEE

Abstract-Propagation of nonreciprocal modes in transversely
magnetized lossless nonreciprocal waveguides is analyzed. It is
shown that purely evanescent modes cannot exist if the wave

propagation is nonreciprocal. As a consequence of this all the

modes which do not support a net average power flux must be

complex. These modes are called here pseudo-evanescent complex

modes. The meaning of the cutoff frequency concept of such

pseudo-evanescent complex modes is also discussed.

I. INTRODUCTION

c OMPLEX modes in reciprocal lossless inhomogeneous

waveguides [1 ]–[4], as well as in reciprocal homoge-

neously and anisotropically filled waveguides [5] have been

reported in the literature. In all these cases, a plane wave

with a z dependence of the fields e–J ~“ was assumed, where

k = D – ja is the complex propagation constant, /3 is the

phase constant and a is the attenuation constant. It has also

been reported that four values of the propagation constant k,

–k, k“ and –k” are present. More recently complex modes in

nonreciprocal lossless waveguides have been investigated [6].

In the present letter, wave propagation in transversely mag-

netized lossless nonreciprocal waveguides is analyzed. It is

shown that all the modes which do not carry a net average

power flux, become complex when the wave propagation is

nonreciprocal. These modes are called here pseudo-evanescent

complex modes

II. THEORY

Let a waveguide be inhomogeneously filled with lossless

gyrotropic materials (see Fig. 1), having the following prop-

erties:

q(–Ho,t) = G* (Ho,j) (1)

z(–Ho,i) = ~*(Ho,i). (2)

In the following, we will denote {170,i, k} a mode in

the waveguide magnetized with the dc fields 170,Z, having

complex propagation constant k. We say that this mode is a

nonreciprocal mode (with respect to the propagation constant)
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Fig. 1. A general lossless waveguide inhomogeneously tilled with trans-
versely magnetized gyrotropic media.

if there is no other mode {110,,, –k} with opposite propagation

constant.

If Maxwell’s equations are applied to the {lZO,i, k} mode

of the waveguide, the following equations are satisfied in each

homogeneous subsection:

–jkaz x Ei + Vt x Ei = –jwp% . Hi (3)

–jkaZ x H, + Vt x H, = jw~, . Ei, (4)

where E(z, y) and H(%, y) are the radiofrequency fields in

the zth homogeneous subsection, associated with the mode

{HO,,, k}.

Taking the complex conjugate and after some calculations,

the same equations are obtained for the radiofrequency fields

(13;, –H;), provided k changes to –k* and the constitutive

tensor are replaced by by Z:, D; (i.e., if the dc magnetizing

field HO,i is replaced by –Ho,,), Since the new boundary

conditions imposed by the change of HO,, to –HO,, are also

satisfied by (17~, –H; ), we conclude that Zf {HO, i, k} is a

mode of the waveguide. { –HO,i, – h“ } represents also a mode

of the guide.

Let us now consider the latter mode { –HO,i, –k” }. After

a reflection in the transverse (x – g) plane, and taking

into account the electromagnetic field properties with spatial

reflection [7], this mode becomes a {HO,%, k’ } mode, provided

that the dc bias field H.,i is contained in the transverse (z – g)

plane. Therefore, in transversely magnetized waveguides, the

existence of the {HO,,, k} mode, implies the existence of the

{HO,i, k“} mode.
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TABLE I
COMPLEX PROPAGATIONCONSTANT IN mm– 1 IN A FERRITE-LOADED PARALLEL-PALATE WAVEGUIDE 1

WITH hf = 2 mm, hd = 8 mm, ~d/EO = 1, ef = 12.6, Ho = 500 oe, fr = 10 GHz

Mode 43TM, = o 4rrM. = 100 47rM. = 300 4rrM. = 1000 4rrM, = 2000

1 0 0.0028 0.0075 0.0249 0.0396
+jO.0849 +jO.0876 +jo.0957 ?rjo.1407 +jO.2368

2 0 0.0027 0.0082 0.0322
+jO.5021

0.1093
+jO.5025 +jo.5035 +jO.5112 +jO.5469

3 0 0.0014 0.0044 0.0169 0.0495
+jO.8539 +jO.8539 +jO.8540 +.jO.8531 +jO.8361

4 0 0.24. 10–3 0.74 10–3 0.0030 0.0088
*jl.1953 +jl.1953 +jl.1955 +jl.1962 +jl.928

‘ See Fig. 2.

Notice that purely evanescent modes, {ZI.,z, –ja.}, can

not be nonreciprocal, since in this case, the reciprocal mode

{llO,i, jcz} must also exist. On the other hand, it is a well-

known fact that all modes that do not carry a net average

power flux must be either evanescent or complex, Thus, since

the existence of nonreciprocal purely evanescent modes in

transversely magnetized waveguides is impossible, it turns out

that all nonreciprocal modes that do not support a net average

power~ux must be complex in this type of waveguide.

III. NUMERICAL EXAMPLES

In this section, we will analyze the dispersion characteristics

of nonreciprocal TE modes in a ferrite-loaded parallell plate

waveguide. The method of analysis will be the same as that

presented in [8], and it will not be developed here.

The effects of the nonreciprocity on the propagation constant

of the TE modes are shown in Table L This table shows the

variation in the propagation constant of the first four TE modes

with respect to the magnitude of the internal magnetization

of the ferrite slab (which is varied from O to 2.000 Gauss).

The operation frequency (fr) is chosen in such a way that

the four modes considered were purely evanescent in the

reciprocal case (Al. = O). It is clearly observed how the

presence of nonreciprocity makes the evanescent reciprocal

modes (M. = O) turn into nonreciprocal pseudo-evanescent

complex modes with the aforementioned properties.

Fig. 3 shows the dispersion of the attenuation and phase

constant of the first TE mode of the above waveguide. Reading

this figure from the right to the left, it can be seen how

the transition from propagating to pseudo-evanescent complex

modes takes place at a nonzero value of the phase constant, and

after the phase constant of one of the propagating modes passes

through zero. This behavior has been found in all the analyzed

pseudo-evanescent modes, and it is in agreement with the well

known fact that complex modes can appear as a combination

of a forward and a backward wave [9]. This fact suggests

that the cutoff frequency of pseudo-evanescent modes can be

defined as the frequency at which the complex mode appears.
This cutoff frequency does not coincide with the frequency

at which the phase constant of the propagating modes passes

through zero.

IV. CONCLUSION

It has been shown that nonreciprocal purely evanescent
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Fig. 2. Ferrite-loaded parallel-plate waveguide transversely magnetized.
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Fig. 3. Phase constant ~: (— ) and attenuation factor a: (- -- -)

in mm– 1 of the first ‘1’E mode in a ferrite-loaded parallel-plate waveguide

(See Fig. 2), with hf = 2 mm,hd = 8 mm, Q/,o = 1, 6f/&I = 12.6,

47rAls = 2000 G, Ho = 500 Oe.

modes can not appear in transversely magnetized nonrecip-

rocal waveguides. Pseudo-evanescent nonreciprocal complex

modes take the place of such modes in these waveguides. Nu-

merical investigations suggest that pseudo-evanescent complex

modes always appear as a combination of a backward and

a forward wave, after the phase constant of one of these

waves (the backward one) passes through zero. Thus, the

cutoff frequency OIFpseudo-evanescent complex modes does
not coincide with the frequency at which the phase constant

passes through zero.

Nonreciprocal pseudo-evanescent complex modes are a type

of complex modes. They are complex modes because they

have a complex propagation constant and do not carry a net

average pover flux. Nevertheless, these modes also preserve
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certain properties of the evanescent

istence of a cutoff frequency. The

purely real for frequencies above the

modes, such as the ex-

propagation constant is

the cutoff frequency but

it turns out to be complex (with nonzero real and imaginary

parts) below the cutoff frequency. Pseudo-evanescent complex

modes turn into purely evanescent modes as the cause of

the nonreciprocity dissapears (for instance when the external

magnetic field is removed).
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